
Computers & Operations Research 40 (2013) 1448–1460
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05

http://d

n Corr

E-m

anasafa
journal homepage: www.elsevier.com/locate/caor
Minimizing ordered weighted averaging of rational functions
with applications to continuous location

Vı́ctor Blanco a, Safae El Haj Ben Ali b, Justo Puerto b,n

a Departamento de Métodos Cuantitativos para la Economı́a y la Empresa, Universidad de Granada, 18011, Spain
b Departamento de Estadı́stica e Investigación Operativa, Universidad de Sevilla, 41012, Spain
a r t i c l e i n f o

Available online 11 October 2012

Keywords:

Continuous location

Ordered median problems

Problem of Moments
48/$ - see front matter & 2012 Elsevier Ltd. A

x.doi.org/10.1016/j.cor.2012.10.005

esponding author.

ail addresses: vblanco@ugr.es (V. Blanco),

e@gmail.com (S.E. Ben Ali), puerto@us.es (J. P
a b s t r a c t

This paper considers the problem of minimizing the ordered weighted average (or ordered median)

function of finitely many rational functions over compact semi-algebraic sets. Ordered weighted

averages of rational functions are, in general, neither rational functions nor the supremum of rational

functions so current results available for the minimization of rational functions cannot be applied to

handle these problems. We prove that the problem can be transformed into a new problem embedded

in a higher dimensional space where it admits a convenient polynomial optimization representation.

This reformulation allows a hierarchy of SDP relaxations that approximates, up to any degree of

accuracy, the optimal value of those problems. We apply this general framework to a broad family of

continuous location problems showing that some difficult problems (convex and non-convex) that up

to date could only be solved on the plane and with Euclidean distance can be reasonably solved with

different ‘p-norms in finite dimensional spaces. We illustrate this methodology with some extensive

computational results on constrained and unconstrained location problems.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Ordered weighted averaging (OWA) or ordered median function
(OMF) operators provide a parameterized class of mean type
aggregation operators (see [28,50] and the references therein for
further details). Many notable mean operators, such as the max-
imum, arithmetic average, median, k-centrum, range and minimum,
are members of this class. They have been widely used in location
theory and artificial intelligence because of their ability to represent
flexible models of modern logistics and linguistically expressed
aggregation instructions in artificial intelligence [28,45–50]. Ordered
weighted averages (or ordered median) of rational functions are, in
general, neither rational functions nor the supremum of rational
functions so current results available for the minimization of
rational functions are not applicable. In spite of its intrinsic interest,
one can only find in the literature different methods for solving
particular instances, see e.g. [6,7,17,28–34,36,38], nevertheless as far
as we know, a common approach for solving this family of problems
is not available yet. The first goal of this paper is to develop a unified
tool for solving this class of optimization problems. In this line, we
prove that the general problem can be transformed into a new
problem embedded in a higher dimensional space where it admits a
convenient polynomial optimization representation that allows to
ll rights reserved.

uerto).
arbitrarily approximate or to solve it as a minimization problem
over an adequate closed semi-algebraic set.

Regarding the applications, it is commonly agreed that ordered
median location problems are among the most important applica-
tions of OWA operators. Continuous location problems appear very
often in economic models of distribution or logistics, in statistics
when one tries to find an estimator from a data set or in pure
optimization problems where one looks for the optimizer of a
certain function. For a comprehensive overview of the use of these
operators in optimization the reader is referred to [5] or [28].
Despite the fact that many continuous location problems rely
heavily on a common framework, specific solution approaches have
been developed for each of the typical objective functions in location
theory (see for instance [5]). To overcome this inflexibility and to
work towards a unified approach to location theory the so-called
ordered median problem (OMP) was developed (see [28] and
references therein). Ordered median problems represent as special
cases nearly all classical objective functions in location theory. More
precisely, the 1-facility ordered median problem can be formulated
as follows: a vector of weights ðl1, . . . ,lnÞ is given. The problem is to
find a location for a facility that minimizes the weighted sum of
distances where the distance to the closest point to the facility is
multiplied by the weight ln, the distance to the second closest, by
ln�1, and so on. The distance to the farthest point is multiplied by
l1. Many location problems can be formulated as the ordered
1-median problem by selecting appropriate weights. For example,
the vector for which all li ¼ 1 is the 1-median problem, the problem
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where l1 ¼ 1 and all others are equal to zero is the 1-center
problem, the problem where l1 ¼ � � � ¼ lk ¼ 1 and all others are
equal to zero is the k-centrum. Minimizing the range of distances is
achieved by l1 ¼ 1, ln ¼�1 and all others are zero. Despite its full
generality, the main drawback of this framework is the difficulty of
solving the problems with a unified tool. There are nowadays some
successful approaches available whenever the framework space is
either discrete (see [3,25,33]) or a network (see [14,15] or [27]).
Nevertheless, the continuous case has been, so far, only partially
covered and there have been some attempts to overcome this
drawback, at least in the plane and with Euclidean norm. For
instance, in Drezner [4] and Drezner and Nickel [6,7] the authors
present two different approaches. The first one uses a continuous
branch and bound method based on triangulations (BTST) and the
second one on a D-C decomposition for the objective function that
allow solving the problems on the plane. More recently, Espejo et al.
[11] and Rodriguez-Chia et al. [38] also address the particular case of
the planar convex ordered and k-centrum problems with Euclidean
distances by using geometric arguments to develop better algo-
rithms for those problems.

Our aim is to design a common approach to solve the above
mentioned family of location problems, for different distances in
finite dimensional spaces. This is essentially the second goal of this
paper. In our way, we have addressed the more general problem
that consists of the minimization of the OWA operator of a finite
number of rational functions over basic, closed semi-algebraic sets.
Of course, we know that this problem in its full generality is NP-
hard since it includes general instances of concave minimization
(see e.g. [35]). Therefore, we cannot expect to find polynomial time
algorithms for this class of problems. Rather, we will apply a
methodology first proposed by Lasserre [19] that provides a
hierarchy of semidefinite programming problems (in short, SDP)
that converges to the optimal solution of the original problem, with
the property that each auxiliary problem in the sequence can be
solved in polynomial time. (See e.g. [42] for some classical com-
plexity results on semidefinite programming.)

The paper is organized in six sections. The first one is our
introduction. In the second section and for the sake of complete-
ness, we recall some general results on the Theory of Moments
that will be useful in the rest of the paper. Section 3 introduces
the problem OMRPl which consists of minimizing the ordered

median function of finitely many rational functions over a compact
basic semi-algebraic set. In the spirit of the moment approach
developed in Lasserre [19,21] for polynomial optimization and
later adapted by Jibetean and De Klerk [13], we define a hierarchy
of semidefinite programming relaxations. Each SDP relaxation is a
semidefinite program which, up to arbitrary (but fixed) precision,
can be solved in polynomial time and the monotone sequence of
optimal values associated with the hierarchy converges to the
optimal value of OMRPl. Under some quite general conditions,
the convergence is finite and we can even detect whether a
certain relaxation in the hierarchy is exact (i.e. provides the
optimal value), and to extract optimal solutions (theoretical
bounds on the relaxation order for the exact results can be found
in [40,41]). Section 4 considers a general family of location
problems that is built from the problem OMRPl but which does
not actually fits under the same formulation because the objective
functions are not quotients of polynomials. Nevertheless, we
prove that under a certain reformulation one can define another
hierarchy of relaxed problems that fulfills similar convergence
properties. This approach is applicable to location problems with
‘p-norms (for pAQ) in finite dimensional spaces. We exploit the
special structure of these problems to find a block diagonal
reformulation that reduces the sizes of the SDP relaxations and
allows to solve larger instances. Our computational tests are
presented in Section 5 and they are organized to be comparable
with previous results presented in the literature. We analyze five
families of problems, namely, Weber, center, k-centrum, trimmed-
mean and range in R2 and R3 with norms ‘2 and ‘3. There we show
that convergence is rather fast and high accuracy is achieved in all
cases, in low order relaxations. (We prove that for location
problems with Euclidean distances that relaxation order is r¼2.)
In addition, we include some computational results on non-
convex constrained location problems in R3 and with the
‘3-norm to show the powerfulness of our approach to also handle
non-convex problems. The paper ends with some conclusions and
an outlook for further research.
2. Preliminaries

In this section we recall the main definitions and results on the
Problem of Moments that will be useful for the development
through this paper. We use standard notation in the field (see
e.g. [23]).

We denote by R½x� the ring of real polynomials in the variables

x¼ ðx1, . . . ,xdÞ, for dAN (dZ1), and by R½x�r �R½x� the space of
polynomials of degree at most rAN (here N denotes the set of

non-negative integers). We also denote by B¼ fxa : aANd
g a

canonical basis of monomials for R½x�, where xa ¼ xa1

1 � � � x
ad

d , for

any aANd. Note that Br ¼ fxaAB :
Pd

i ¼ 1 airrg is a basis for R½x�r .

For any sequence indexed in the canonical monomial basis B,
y¼ ðyaÞaANd �R, let Ly : R½x�-R be the linear functional defined,
for any f ¼

P
aANd f a xaAR½x�, as Lyðf Þ :¼

P
aANd f aya.

The moment matrix MrðyÞ of order r associated with y has its

rows and columns indexed by ðxaÞ and MrðyÞða,bÞ :¼ LyðxaþbÞ ¼

yaþb, for 9a9, 9b9rr (here 9a9 stands for the sum of the coordi-

nates of aANd). Note that the moment matrix of order r has

dimension ðdþ r
d Þ � ð

dþ r
d Þ and that there are ðdþ2r

d Þya variables.

For gAR½x�ð ¼
P

gANd ggxg), the localizing matrix MrðgyÞ of order
r associated with y and g has its rows and columns indexed by ðxaÞ
and MrðgyÞða,bÞ :¼ LyðxaþbgðxÞÞ ¼

P
gggygþaþb, for 9a9, 9b9rr.

Definition 1. Let y¼ ðyaÞ �R be a sequence indexed in the
canonical monomial basis B. We say that y has a representing

measure supported on a set KDRd if there is some finite Borel
measure m on K such that

ya ¼

Z
K

xa dmðxÞ for all aARd:

The tools used to ensure that a sequence of moments has a
representing Borel measure are based on finding certificates of
positivity for real polynomials. The first representation result,
known as Schmudgen’s Positivstellensatz, was an important break-
through in the field [39]. An improvement on that result, under a
relatively weak assumption called Archimedean condition is due to
Putinar [37]. The main assumption to be imposed when one wants
to assure the convergence of the SDP relaxations for solving
polynomial optimization problems (see for instance [22,23]) is a
consequence of Putinar’s results [37] and it is stated as follows.

Archimedean property. Let fg1, . . . ,glg �R½x� and K :¼ fxARd :
gjðxÞZ0, j¼ 1, . . . ,‘g a basic closed semi-algebraic set. Then, K
satisfies Archimedean property if there exists uAR½x� such that:
1.
 fx : uðxÞZ0g �Rd is compact, andP

2.
 u¼ s0þ

‘
j ¼ 1 sj gj, for some s1, . . . ,slAS½x�. (This expression

is usually called Putinar’s representation of u over K).

Being S½x� �R½x� the subset of polynomials that are sums of squares.
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Note that Archimedean property is equivalent to impose that
the quadratic polynomial uðxÞ ¼M�

Pd
i ¼ 1 x2

i has Putinar’s repre-
sentation over K for some M40.

We observe that Archimedean property implies compactness
of K. It is easy to see that Archimedean property holds if either
fx : gjðxÞZ0g is compact for some j, or all gj are affine and K is

compact. Furthermore, Archimedean property is not restrictive at

all, since any semi-algebraic set KDRd for which is known thatPd
i ¼ 1 x2

i rM holds for some M40 and for all xAK, admits a new

representation K0 ¼K [ fxARd : glþ1ðxÞ :¼ M�
Pd

i ¼ 1 x2
i Z0g that

verifies Archimedean property (see Section 2 in [23]).
The importance of Archimedean property stems from the

following result that links such a condition with the semidefi-
niteness of the moment and localizing matrices.

Theorem 2 (Putinar [37]). Let fg1, . . . ,glg �R½x� and K :¼ fxARd :
gjðxÞZ0, j¼ 1, . . . ,‘g satisfying Archimedean property. Then:
1.
 Any f AR½x� which is strictly positive on K has Putinar’s repre-

sentation over K.

2.
 y¼ ðyaÞ has a representing measure on K if and only if MrðyÞk0,

and MrðgjyÞk0, for all j¼ 1, . . . ,l and rAN.

(Here, the symbol k0 stands for positive semidefinite matrix.)

The following result that appears in [18] will be crucial for the
development in the next sections.

Lemma 3 (Laraki and Lasserre [18, Lemma 2.3]). Let K�Rd be

compact and let p, q be continuous with q40 on K. LetMðKÞ be the

set of finite Borel measures on K and let PðKÞ �MðKÞ be its subset of

probability measures on K. Then

min
mAPðKÞ

R
Kp dmR
Kq dm

¼ min
jAMðKÞ

Z
K

p dj :

Z
K

q dj¼ 1

� �
¼ min

mAPðKÞ

Z
K

p

q
dm¼min

xAK

pðxÞ

qðxÞ
:

3. Minimizing the ordered weighted average of finitely many
rational functions

Let K�Rd be a basic, closed semi-algebraic set defined as

K :¼ fxARd : gjðxÞZ0, j¼ 1, . . . ,‘g ð1Þ

for g1, . . . ,g‘AR½x�. We assume that K satisfies Archimedean
property.

Let us introduce the ordered median function OMðxÞ ¼Pm
k ¼ 1 lkðxÞf ðkÞðxÞ, for some rational functions ðf jÞ �R½x�, being

f k ¼ pk=qk rational functions with pk,qkAR½x�, qk40 on K, for
every k¼ 1, . . . ,m. In addition, let lkðxÞAR½x� be generic polyno-
mials and f ðkÞðxÞAff 1ðxÞ, . . . ,f mðxÞg such that f ð1ÞðxÞZ f ð2ÞðxÞ Z � � �

Z f ðmÞðxÞ for xARd.
Consider the following problem:

rl :¼ min
xAK

OMðxÞ: (OMRP0
l)
Associated with the above minimization problem we

introduce an equivalent formulation that will be useful to apply
the moment tools to solve the ordered median problem. For each
i¼ 1, . . . ,m, j¼ 1, . . . ,m consider the following family of decision
variables for each xAK:

wij ¼
1 if f iðxÞ ¼ f ðjÞðxÞ,

0 otherwise:

(
:

Now, we consider the problem:

rl ¼min
x,w

Xm

j ¼ 1

ljðxÞ
Xm
i ¼ 1

f iðxÞwij

s:t:
Xm

j ¼ 1

wij ¼ 1 for i¼ 1, . . . ,m, ð2Þ

Xm
i ¼ 1

wij ¼ 1 for j¼ 1, . . . ,m,

w2
ij�wij ¼ 0 for i,j¼ 1, . . . ,m,

hjðx,wÞ :¼
Xm

i ¼ 1

wijf iðxÞ�
Xm
i ¼ 1

wijþ1f iðxÞZ0, j¼ 1, . . . ,m�1,

ð3Þ

h0jðwÞ :¼ 1�
Xm
i ¼ 1

w2
ijZ0, j¼ 1, . . . ,m ð4Þ

wijAR for i,j¼ 1, . . . ,m, xAK: ð5Þ

The first set of constraints ensures that for each x, fi(x) is sorted
in a unique position. The second set ensures that the jth position
is only assigned to one rational function. The next constraints are
added to assure that wijAf0,1g. The fourth one states that
f ð1ÞðxÞZ � � �Z f ðmÞðxÞ. The last set of constraints ensures that
Archimedean property holds for the new feasible region. (Note
that this last set of constraints are redundant but it is convenient
to add them for a better description of the feasible set.)

These two problems (OMRP0
l) and (OMRPl) satisfy the follow-

ing relationship.

Theorem 4. Let xAK be a feasible solution of ðOMRP0
lÞ then there

exists wAf0,1gm�m, fulfilling that (x,w) is a feasible solution of

(OMRPl) and such that both solutions have equal objective values.

Conversely, if ðx,wÞAK�Rm�m is a feasible solution for (OMRPl)
then x is a feasible solution of (OMRP0

l) and both solutions have the

same objective value. In particular rl ¼ rl.

Proof. Let x be a feasible solution of (OMRP0
l). Then, it clearly

satisfies that xAK. In addition, let s be the permutation of
f1, . . . ,mg such that f sð1ÞðxÞZ f sð2ÞðxÞZ � � �Z f sðmÞðxÞ. Take,

wij ¼
1 if i¼ sðjÞ,
0 otherwise:

(
Clearly, ðx,wÞ satisfy the constraints in (2)–(5). Indeed, for any i,Pm

j ¼ 1 wij ¼wis�1ðiÞ ¼ 1. Analogously, for any j,
Pm

i ¼ 1 wij ¼

wsðjÞ,j ¼ 1 (being then (4) also satisfied). By its own definition, w

only takes 0,1 values and thus, w2
ij�wij ¼ 0 for all i,j. Finally, to

prove that ðx,wÞ satisfies (3), we observe, w.l.o.g., that for any
j there exist in and î such that sðjÞ ¼ in and sðjþ1Þ ¼ î. Hence:Xm

i ¼ 1

wijf iðxÞ ¼winjf sðjÞðxÞZw
îjþ1

f sðjþ1ÞðxÞ ¼
Xm

i ¼ 1

wijþ1f iðxÞ:

Moreover,

OMlðxÞ ¼
Xm

j ¼ 1

ljðxÞ
Xm

i ¼ 1

f iðxÞwij:

Conversely, if ðx,wÞ is a feasible solution of (OMRPl) then,

clearly x is feasible of (OMRP0
l) and by the above, OMlðxÞ ¼Pm

j ¼ 1 ljðxÞ
Pm

i ¼ 1 f iðxÞwij: &

Next, we observe that since f i ¼ pi=qi for each i¼ 1, . . . ,m, both
the objective function and the constraint (3) are rational func-
tions. Moreover, the constraint

Pm
i ¼ 1 wijf iðxÞZ

Pm
j ¼ 1 wijþ1f iðxÞ

(OMRPl)
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can be written as a polynomial constraint in the formXm

i ¼ 1

wijpiðxÞ
Ym
ka i

qkðxÞZ
Xm

i ¼ 1

wijþ1 piðxÞ
Ym
ka i

qkðxÞ, j¼ 1, . . . ,m:

Let us denote by K the basic closed semi-algebraic set that defines
the feasible region of (OMRPl), namely:

K :¼ ðx,wÞARdþm2

:
Xm
j ¼ 1

wij ¼ 1,
Xm
i ¼ 1

wij ¼ 1, w2
ij�wij ¼ 0,

8<:
8 i,j¼ 1, . . . ,m, hjðx,wÞZ0, j¼ 1, . . . ,m�1,

h0jðwÞZ0, j¼ 1, . . . ,m, xAK

9=;: ð6Þ

Note that K has not the shape of a standard semi-algebraic set,
as defined at the beginning of the section, since it is defined by
equality constraints. However, it is clear that each equality
constraint in K can be equivalently written as two inequality
constraints, being K written as the semi-algebraic set in (1).

Proposition 5. Let K �Rdþm2

be the closed basic semi-algebraic set

defined in (6). If K satisfies Archimedean condition then K also

satisfies this condition. Moreover, consider the infinite dimensional

optimization problem

Pl : brl ¼min
x,w

Z
K

pl dm :
Z

K
ql dm¼ 1,mAMðKÞ

� �
, ð7Þ

being

plðx,wÞ ¼
Xm

j ¼ 1

ljðxÞ
Xm
i ¼ 1

wij piðxÞ
Ym
ka i

qkðxÞ and qlðx,wÞ ¼
Ym

k ¼ 1

qkðxÞ:

ð8Þ

Then rl ¼ brl.

Proof. Since K satisfies Archimedean property, the quadratic
polynomial x/uðxÞ :¼ M�JxJ2

2 can be written as uðxÞ ¼ s0ðxÞþP‘
j ¼ 1 sjðxÞgjðxÞ for some s.o.s. polynomials ðsjÞ �S½x� and for

some M40. Next, consider the polynomial

ðx,wÞ/rðx,wÞ ¼Mþm�JxJ2
2�
Xm

i ¼ 1

Xm

j ¼ 1

w2
ij:

Obviously, its level set fðx,wÞARd�m2

: rðx,zÞZ0g �Rnþm2

is com-
pact and moreover, r can be written in the form

rðx,wÞ ¼ s0ðxÞþ
X‘
j ¼ 1

sjðxÞgjðxÞþ1�
Xm

j ¼ 1

1�
Xm
i ¼ 1

w2
ij

 !zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{h 0
j
ðwÞ defining K

for appropriate s.o.s. polynomials ðs0jÞ �S½x,w� (s0j ¼ 1,8j). There-
fore K satisfies Archimedean property. In particular, this implies
that K is compact.

Now, we observe that the objective function of (OMRPl) can be

written as a quotient of polynomials in R½x,w�. Indeed,Xm

j ¼ 1

ljðxÞ
Xm
i ¼ 1

f iðxÞwij ¼
plðx,wÞ

qlðx,wÞ
: ð9Þ

Then, by Lemma 3 we can transform Problem (OMRPl) in an

infinite dimensional linear program on the space of Borel mea-

sures defined on K. It follows by applying Lemma 3 to the

reformulation of (OMRPl) with the objective function written in

(9) using pl and ql in (8). &

The reader may note the generality of this class of problems.
Depending on the choice of the polynomial weights l1ðxÞ, . . . ,lmðxÞ
we get different classes of problems. Among then, we emphasize the
important instances given by:
1.
 l¼ ð1,0, . . . ,0,0Þwhich corresponds to minimize the maximum
of a finite number of rational functions,
2.
 l¼ ð1,. . .ðkÞ ,1,0, . . . ,0Þ which corresponds to minimize the sum of
the k-largest rational functions (k-centrum)
3.
 l¼ ð0,. . .ðk1Þ,0,1, . . . ,1,0,. . .ðk2Þ,0Þ which models the minimization of
the ðk1,k2Þ-trimmed-mean of m rational functions,y
4.
 l¼ ð1,a, . . . ,aÞ which corresponds to the a-centdian, i.e. mini-
mizing the convex combination of the sum and the maximum
of the set of rational functions.
5.
 l¼ ð1,0, . . . ,0,�1Þ which corresponds to minimize the range of
a set of rational functions.

Remark 6. Problem (OMRP0
l) can be easily extended to deal with

the minimization of the ordered median function of a finite
number of several ordered median operators of rational functions.
The reader may observe that this can be done by performing a
similar transformation to the one in (OMRPl) and thus lifting the
original problem into a higher dimensional space.
3.1. Some remarkable special cases

The above general analysis extends the general theory of
moments to the case of ordered weighted averages of rational
functions. Notice that this approach goes beyond a trivial adapta-
tion of that theory since ordered weighted averages of rational
functions are not, in general, either rational functions or the
supremum of rational functions so that current results cannot be
applied to handle these problems. However, one can transform
the problem into a new problem embedded in a higher dimen-
sional space where it admits a representation that can be cast in
the minimization of another rational function in a convenient
closed semi-algebraic set. Needless to say that the number of
variables increases with respect to the original one. This may
become a problem in particular implementations due to the
current state of nonlinear programming solvers.

Moreover, in some important particular cases that have been
extensively considered in the field of Operations Research, the
above approach can be further simplified as we will show in the
following. One of these cases, the minimization of the maximum
of finitely many rational functions has been already analyzed by
Laraki and Lasserre [18]. We will show that such an approach is
also a particular case of the analysis that we present in the
following.

For the rest of this subsection we will restrict ourselves, for the
sake of readability, to the case of scalar (real) lambda-weights. We
will begin with the case of l¼ ð1,. . .ðkÞ ,1,0 . . . ,0Þ, for 1rkrm. Note
that if k¼1, we will recover the case analyzed in [18], the case
k¼m is trivial since it reduces to minimize the overall sum but
the remaining cases are not yet known.

We are interested in finding the minimum of the sum of the k-
largest values ff 1ðxÞ, . . . ,f mðxÞg for all xAK, being K the basic,
closed semi-algebraic set defined in (1). In other words, for any
kAf1, . . . ,m�1g, we wish to solve the problem:

Rk :¼ min
xAK

SkðxÞ :¼
Xk

j ¼ 1

f ðjÞðxÞ: ð10Þ

We observe that for a given xAK, we have

SkðxÞ ¼
Xk

j ¼ 1

f ðjÞðxÞ ¼max
Xm
j ¼ 1

vjf jðxÞ :
Xm
j ¼ 1

vj ¼ k,0rvjr1, 8j

8<:
9=;:
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Therefore, by the Strong Duality Theorem of linear programming:

SkðxÞ ¼min ktþ
Xm
j ¼ 1

rj : tþrjZ f jðxÞ, rjZ0, 8j

8<:
9=;:

Finally, we consider the problem:

R̂k :¼ min ktþ
Xm

j ¼ 1

rj

s:t: tþrjZ f jðxÞ, j¼ 1, . . . ,m, ðkCÞ

rjZ0, j¼ 1, . . . ,m,

xAK:

Since we have assumed K to satisfy Archimedean condition, it
follows that K is compact. Thus, for any j¼1,y,m, there exist
lower and upper bounds, LBj and UBj, for each fj such that for any
xAK,

LBjr f jðxÞrUBj, j¼ 1, . . . ,m, 8xAK:

Let us denote LB¼minj ¼ 1: :mLBj and UB¼maxj ¼ 1: :mUBj. Set

K1 :¼ fðx,t,rÞARdþ1þm : tþrjZ f jðxÞ, rjZ0, r2
j r ðUBj�LBÞ2, j¼ 1, . . . ,m,

t2rmaxfUB2,LB2
g, xAKg:

We get the following result.

Lemma 7. If K�Rd satisfies Archimedean property then K1 �

Rdþ1þm satisfies Archimedean property. Moreover Rk ¼ R̂k ¼min
fktþ

Pm
j ¼ 1 rj : ðx,t,rÞAK1g.

Proof. Consider an arbitrary k, 1rkrm�1 and an arbitrary
(but fixed) xAK. Without loss of generality, assume that f 1ðxÞ

Z � � �Z f mðxÞ. We define the function

gðx,tÞ :¼ min ktþ
Xm
j ¼ 1

rj : tþrjZ f jðxÞ, rjZ0, 8 j¼ 1, . . . ,m

8<:
9=;:

Clearly, gðx,tÞ is piecewise linear and convex as a function of t;
and it attains its minimum at any point of the interval
Ik ¼ ðf kþ1ðxÞ,f kðxÞ�. Indeed, observe that for any tA Ik, the slope
of g (i.e. its derivative with respect to t) is null since:

gðx,tÞ ¼ ktþ
Xk

j ¼ 1

ðf jðxÞ�tÞ ¼
Xk

j ¼ 1

f jðxÞ ¼ SkðxÞ:

From the above, we observe that

Rk ¼min
xAK

SkðxÞ

¼min
x A K
t A Ik

gðx,tÞ

¼min ktþ
Xm

j ¼ 1

rj : tþrjZ f jðxÞ, rjZ0, 8 j¼ 1, . . . ,m,xAK, tA Ik

8<:
9=;

¼ R̂k:

It remains to prove that the constraints r2
j r ðUBj�LBÞ2,

j¼ 1, . . . ,m and t2rmaxfUB2,LB2
g are redundant for Problem

(kC) and that the new feasible region K1 satisfies Archimedean

condition. First, we observe from the argument above that in

order to obtain the minimum value of the function g, for any

k¼ 1, . . . ,m�1 and any xAK, we only need to consider the range

tAðf ðmÞðxÞ,f ð1ÞðxÞ�. Hence, the overall range for t can be restricted to

LBrtrUB, therefore any optimal solution of Problem (kC) satisfies

t2rmaxfUB2,LB2
g. In addition, for any xAK, the constraints rjZ

f jðxÞ�t define the range of the variable rj and since we are mini-

mizing rj with positive coefficient, this variable will not be greater
than the maximum of its lower limit. Hence,

0rrjr max
x A K

it A ½f ðmÞ ðxÞ,f ð1Þ ðxÞ�

f jðxÞ�trUBj�LB, 8 j¼ 1, . . . ,m:

Augmenting the constraints, r2
j rðUBj�LBÞ2, 8 j¼ 1, . . . ,m, and

t2rmaxðUB2,LB2
Þ, in the definition of K does not change the

value of R̂k and makes the feasible set K1 to satisfy Archimedean

condition using an argument similar to the one in the proof of

Proposition 5. &

This approach extends further to the more general case of non-
increasing monotone lambda-weights, i.e. l1Zl2Z � � �ZlmZ

lmþ1 :¼ 0 (note that we define an artificial lmþ1 to be equal to
0). In this case the problem to be solved is

Rl :¼ min
xAK

MOMlðxÞ :¼
Xm

j ¼ 1

ljf ðjÞðxÞ:

We observe that for a fixed xAK, we can write the objective
function as:

MOMlðxÞ ¼
Xm

j ¼ 1

ðlj�ljþ1ÞSjðxÞ:

Then, we introduce the problem

R̂l :¼min
Xm

k ¼ 1

ðlk�lkþ1ÞSkðxÞ ð11Þ

tkþrkjZ f jðxÞ, j,k¼ 1, . . . ,m,

rkjZ0, j,k¼ 1, . . . ,m,

xAK:

Let us denote

K2 :¼ fðx,t,rÞARdþmþm2

: tkþrkjZ f jðxÞ, rkjZ0, r2
kjr ðUBj�LBÞ2,

t2
k rmaxfUB2,LB2

g, k,j¼ 1, . . . ,m, xAKg,

the basic closed semi-algebraic set that defines the feasible region
of the Problem (11). (Note that similarly to the case of K1 the
augmented constraints in K2 are also redundant.) Now, based in
the previous lemma, it is straightforward to check the following
result.

Lemma 8. If K�Rd satisfies Archimedean property then K2 �

Rdþmþm2

satisfies Archimedean property. Moreover Rl ¼ R̂l ¼minPm
k ¼ 1ðlk�lkþ1ÞSkðxÞ : ðx,t,rÞAK2

� �
.

Another class of problems that can also be analyzed giving rise
to a more compact formulation that the one in the general
approach (OMRPl) is the trimmed-mean problem. A trimmed-

mean objective appears for l¼ ð0, . . . ,0
zfflfflfflffl}|fflfflfflffl{k1

,1, . . . ,1,0, . . . ,0
zfflfflfflffl}|fflfflfflffl{k2

Þ.
This family of problems has attracted a lot of attention in last

years in the field of location analysis because of its connections to
robust solution concepts. Its rationale rests on the trimmed-mean
concepts in statistics where the extreme observations (outliers)
are removed to compute the central estimates (mean) of a sample.
Thus, we are looking for a point xn that minimizes the sum of the
central functions, once we have excluded the k2-smallest and the
k1-largest. Formally, the problem is

Rðk1 ,k2Þ
¼ min

xAK � Rd

Xm�k2

i ¼ k1þ1

f ðiÞðxÞ:

Now, we observe that
Pm�k2

i ¼ k1þ1 f ðiÞðxÞ ¼ Sm�k2
ðxÞ�Sk1

ðxÞ (see
(10) for the definition of Sk). Therefore, using the above
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transformation we have

Sk1
ðxÞ ¼max

Xm

j ¼ 1

vjf jðxÞ :
Xm

j ¼ 1

vj ¼ k1,0rvjr1, 8j

8<:
9=;,

Sn�k2
ðxÞ ¼min ðm�k2Þtþ

Xm
j ¼ 1

rj : tþrjZ f jðxÞ, rjZ0, 8j

8<:
9=;:

Thus, using both reformulations the trimmed-mean problem
results in

R̂ðk1 ,k2Þ
:¼ min ðm�k2Þtþ

Xm
j ¼ 1

rj�
Xm

j ¼ 1

vjf jðxÞ

s:t:
Xm

j ¼ 1

vj ¼ k1,

tþrjZ f jðxÞ, j¼ 1, . . . ,m, ððk1; k2ÞTrÞ

rjZ0, j¼ 1, . . . ,m,

vjðvj�1Þ ¼ 0, j¼ 1, . . . ,m, xAK:

Let us denote

K3 :¼ ðx,t,r,vÞARdþ1þ2 m : xAK, tþrjZ f jðxÞ, rjZ0, v2
j �vj ¼ 0,

n
r2

j r ðUBj�LBÞ2, j¼ 1, . . . ,m,

t2rmaxfUB2,LB2
g,
Xm

j ¼ 1

v2
j ¼ k1

9=;,

the basic closed semi-algebraic set that defines the feasible region
of (ðk1,k2ÞTrÞ.

Lemma 9. If K�Rd satisfies Archimedean property then

K3 � Rdþ1þ2m satisfies Archimedean property. Moreover Rðk1 ,k2Þ
¼

R̂ðk1 ,k2Þ
¼minfðm�k2Þtþ

Pm
j ¼ 1 rj�

Pm
j ¼ 1 vjf jðxÞ : ðx,t,r,vÞAK3g.

Remark 10. We point out that the above formulation also covers
many others known problems. Among them, we mention the
so-called ‘‘Expropriation’’ and ‘‘Anti k-centrum problems’’ [2,6]. The
first problem consists on maximizing the value of the function
that goes in a given sorted position, say k2. Note that this
objective is obtained in the general formulation allocating a
lambda �1 to the position k2 and zero everywhere else. Indeed,
the objective function �f ðk2Þ

ðxÞ ¼ Sk2
ðxÞ�Sk2þ1ðxÞ. Therefore, the

problem is

R̂ðk2 ,k2þ1Þ :¼ min k2tþ
Xm

j ¼ 1

rj�
Xm

j ¼ 1

vjf jðxÞ

s:t:
Xm

j ¼ 1

vj ¼ k2þ1,

tþrjZ f jðxÞ, j¼ 1, . . . ,m, ðExproÞ

rjZ0, j¼ 1, . . . ,m,

vjðvj�1Þ ¼ 0, j¼ 1, . . . ,m, xAK:

The second problem consists on maximizing the (m�k)-smallest
values of the functions, i.e. maxxAK

Pm
j ¼ k f ðjÞðxÞ. This problem is

equivalent to
�minxAK

Pm
j ¼ k�f ðjÞðxÞ ¼�minxAK ð

Pk�1
j ¼ 1 f ðjÞðxÞ�

Pm
j ¼ 1 f jðxÞÞ.

Clearly, this last rewriting can be embedded into the formulation
of ((k�1,m)Tr), even without the use of the v variables!.

Remark 11. We observe that the special formulations for
k-centrum (kC) and trimmed-mean (ðk1,k2ÞTr) are specially suitable
for handling these two classes of problems. First of all, we note that
if (ðk1,k2ÞTr) has k1 ¼ 0 the problem reduces to a k2-centrum,
variables vj are not needed and formulation (ðk1,k2ÞTr) simplifies
exactly to (kC). Second, we point out that both formulations take
advantage of the special structure of the considered problems and
thus they are simpler than the general formulation (OMRPl)
applied to these problems. Actually, the number of variables in
(kC), for solving the k-centrum problem (resp. (ðk1,k2ÞTr) for
solving the trimmed-mean problem), is dþ1þm (resp. dþ2mþ1)
while the number of variables for the same problem using
(OMRPl) is dþm2. This reduction is remarkable due to the current
status of nonlinear programming solvers. In spite of that, those
problems, where no special structure is known or it cannot be
exploited, can also be tackled using the general formulation
(OMRPl) at the price of using a larger number of variables.
3.2. A convergence result for Problem OMRP0
l

We are now in position to develop a methodology to solve

OMRP0
l . Our approach defines a hierarchy of semidefinite relaxa-

tions based on Problem (7) whose solutions converge to the

optimal solution of OMRP0
l . Let y¼ ðyaÞ be a real sequence indexed

in the monomial basis ðxbwgÞ of R½x,w� (with a¼ ðb,gÞANd
�Nm2

).
Let plðx,wÞ and qlðx,wÞ be defined as in (8).

Let h0ðx,wÞ :¼ plðx,wÞ, and denote xj :¼ dðdeg gjÞ=2e, j¼ 1, . . . ,‘,
nj :¼ dðdeg hjÞ=2e, j¼ 0, . . . ,m�1 and n0j :¼ dðdeg h0jÞ=2e ¼ 1,
j¼1,y,m; where fg1, . . . ,g‘g are the polynomial constraints that
define K and fh1, . . . ,hm�1g and fh01, . . . ,h0mg are, respectively, the
polynomial constraints (3) and (4) in (OMRPl).

Let us denote by Ið0Þ ¼ f1, . . . ,dg and IðjÞ ¼ fðj,kÞgk ¼ 1,...,m, for all

j¼1,y,m. With xðIð0ÞÞ, wðIðjÞÞ we refer, respectively, to the
monomials x, w indexed only by subsets of elements in the sets

Ið0Þ and I(j), respectively. Then, for gk, with k¼ 1, . . . ,‘, let
Mrðy; Ið0ÞÞ (respectively Mrðgky; Ið0ÞÞ) be the moment (resp. loca-
lizing) submatrix obtained from MrðyÞ (resp. MrðgkyÞ) retaining
only those rows and columns indexed in the canonical basis of

R½xðIð0ÞÞ� (resp. R½xðIð0ÞÞ�). Analogously, for hj, j¼ 1, . . . ,m�1 and

h0j, j¼1,y,m, as defined in (3) and (4), respectively, let Mrðy; Ið0Þ [

IðjÞ [ Iðjþ1ÞÞ (respectively Mrðhjy; Ið0Þ [ IðjÞ [ Iðjþ1ÞÞ, Mrðh0jy; Ið0Þ [

IðjÞ [ Iðjþ1ÞÞ ) be the moment (resp. localizing) submatrix

obtained from MrðyÞ (resp. MrðhjyÞ, Mrðh0jyÞ) retaining only those

rows and columns indexed in the canonical basis of R½xðIð0ÞÞ [

wðIðjÞÞ [wðIðjþ1ÞÞ� (resp. R½xðIð0ÞÞ [wðIðjÞÞ [wðIðjþ1ÞÞ�).

For rZmaxfr0,n0g where r0 :¼ maxk ¼ 1,...,‘xk and n0 :¼

max maxj ¼ 0,...,mnj,maxj ¼ 1,...,mn0j
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{ ¼ 1

( )
¼maxj ¼ 0,...,mnj, we intro-

duce the following hierarchy of semidefinite programs:

min
y

LyðplÞ

s:t: Mrðy; Ið0ÞÞk0,

Mr�xk
ðgky; Ið0ÞÞk0, k¼ 1, . . . ,‘,

Mrðy; Ið0Þ [ IðjÞ [ Iðjþ1ÞÞk0, j¼ 1, . . . ,m,

Mr�nj
ðhjy; Ið0Þ [ IðjÞ [ Iðjþ1ÞÞk0, j¼ 1, . . . ,m�1,

Mr�1ðh
0
jy; Ið0Þ [ IðjÞ [ Iðjþ1ÞÞk0, j¼ 1, . . . ,m,

Ly

Xm

i ¼ 1

wij�1

 !
¼ 0, j¼ 1, . . . ,m,

Ly

Xm
j ¼ 1

wij�1

0@ 1A¼ 0, i¼ 1, . . . ,m,

Lyðw2
ij�wijÞ ¼ 0, i,j¼ 1, . . . ,m,

LyðqlÞ ¼ 1,

ðQrÞ

with optimal value denoted min Q r .
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Theorem 12. Let K �Rdþm2

(as defined in (6)) be the feasible

domain of (OMRPlÞ. Then, with the notation above:
(a)
 min Q rmrl as r-1.

(b)
 Let yr , be an optimal solution of the SDP relaxation (Q r). Let

~IðjÞ ¼ Ið0Þ [ IðjÞ [ Iðjþ1Þ for all j¼ 1, . . . ,m�1. If

rank Mrðy
r; Ið0ÞÞ ¼ rank Mr�r0

ðyr ; Ið0ÞÞ

rank Mrðy
r; ~IðjÞÞ ¼ rank Mr�n0

ðyr; ~IðjÞÞ, j¼ 1, . . . ,m�1 ð12Þ

and if rankðMrðyr; Ið0Þ [ ðIðkÞ [ Iðkþ1ÞÞ \ ðIðjÞ [ Iðjþ1ÞÞÞÞ ¼ 1 for

all jak then min Q r ¼ rl.
Moreover, let Dj :¼ fðx
nðjÞ,wnðjÞÞg be the set of solutions obtained by

the application of the condition (12). Then, every ðxn,wnÞ such that

ðxn

i ,wn

i ÞiA IðjÞ ¼ ðx
nðjÞ,wnðjÞÞ for some Dj is an optimal solution of

Problem OMRPl.

Proof. The convergence of the semidefinite relaxation (Q r) was
proved by Jibetean and De Klerk [13, Theorem 9] for a general
rational function over a basic, closed semi-algebraic set that
satisfies Archimedean Property. Here, we use that result applied
to the rational function in (9). Moreover, the index set of the
indeterminates in the feasible set that generate localizing con-
straints, namely constraints (3) and (4) admits the decomposition
I(k), k¼ 0 . . . ,m that satisfies the running intersection property
(see [20, (1.3)]) and therefore, the result follows by combining
[20, Theorem 3.2] and the results in [13]. &

The above theorem allows us to approximate and solve the
original problem OMRP0

l by its relaxation (Q r) up to any degree of
accuracy by solving block diagonal (sparse) SDP programs which
are convex programs for each fixed relaxation order r and that can
be solved, up to any given accuracy, in polynomial time with
available open source solvers as SeDuMi, SDPA, SDPT3 [16], etc.
4. Generalized location problems with rational objective
functions

This section considers a wide family of continuous location
problems that has attracted a lot of attention in the recent literature
of location analysis but for which there is not a common solution
approach. The challenge is to design a common solution method to
solve them for different distances in finite dimensional spaces.

We are given a set A¼ fa1, . . . ,ang �Rd endowed with an

‘t-norm (here ‘t stands for the norm JxJt ¼ ð
Pd

i ¼ 1 9xi9
t
Þ
1=t, for

all xARd); and a feasible domain K :¼ fxARd : gjðxÞZ 0, j¼ 1,

. . . ,‘g �Rd, assumed to be a closed semi-algebraic set. Since we are
interested in solving location problems we shall assume without
loss of generality that we wish to solve the problem in a bounded
domain so that K is compact. The goal is to find a point xnAK
minimizing some globalizing function of the distances to the set A.
Here, we consider that the globalizing function is rather general
and that it is given as a rational function.

Some well-known examples, that are formulated in the above
terms, are listed below (see e.g. [1,4,10,24] or [28]):
�
 f ðu1, . . . ,unÞ ¼
Pn

io j 9ui�uj9, absolute deviation or envy problem.P

�
 f ðu1, . . . ,unÞ ¼

n
i ¼ 1ðui�uÞ2, variance problem.P
�
 f ðu1, . . . ,unÞ ¼
n
j ¼ 1ðwj=u2

j Þ, obnoxious facility location.P l

�
 f ðu1, . . . ,unÞ ¼

n
j ¼ 1 bj=ð1þhj9uj9 Þ, Huff competitive location.

The main feature and what distinguishes location problems from
other general purpose optimization problems is that the depen-
dence of the decision variables is given throughout the norms to
the demand points in A, i.e. Jx�aiJt. In this section, we consider a
generalized version of continuous single facility location pro-
blems with rational objective functions over closed semi-
algebraic feasible sets.

Let f jðuÞ :¼ pjðuÞ=qjðuÞ : R
n/R, with pjðuÞ,qjðuÞAR½u1, . . . ,un�,

qjðuÞ40 for all j¼1,y,m. We shall define the dependence of
fj to the decision variable xARd via u¼ ðu1, . . . ,unÞ, where
ui : R

d/R, uiðxÞ :¼ Jx�aiJt, i¼1,y,n. Therefore, the j-th compo-
nent of the ordered median objective function of our problems
reads as

~f jðxÞ : R
d/R

x/~f jðxÞ :¼ f jðJx�a1Jt, . . . ,Jx�anJtÞ:

Consider the following problem:

rl :¼min
x

Xm

j ¼ 1

ljðxÞ
~f ðjÞðxÞ : xAK

8<:
9=;, ðLOCOMRFÞ

where:
�
 ljðxÞAR½x�, j¼ 1, . . . ,m, are generic polynomials.

�
 K :¼ fxARd : gjðxÞZ0, j¼ 1, . . . ,‘gDRd satisfies Archimedean

property,

�
 t :¼ r=s, r,sAN, rZs and gcdðr,sÞ ¼ 1.

First of all, since K is compact there exist M040 such that
JxJ2rM0 for all xAK. Then, we observe that any feasible solution
of (LOCOMRF) satisfies Jx�aiJ2rM0 þJaiJ2rM0 þmax1r irn

JaiJ2 :¼ M. Then, since all norms are equivalent in Rd, there exists
g40 such that JxJ2t=JxJ2rg, for all xARd. Hence,
Jx�aiJ2trgM :¼ M . This bound will allow us to derive the
constraints (17) of our reformulation of Problem (LOCOMRF).
These constraints ensure that the feasible region is bounded
which in our framework is sufficient to imply compactness.
For this reason, we will call them from now on compactness

constraints.
Next, Problem (LOCOMRF) does not reduce to the family

OMRPl considered in Section 3 since the dependence on the
decision variable x is not given in the form of polynomials. Note
that ‘t-norms are not, in general, polynomials.

To avoid this inconvenience, we introduce the following
auxiliary problem:

rl ¼ min
x,w,u,v

Xm

j ¼ 1

ljðxÞ
Xm
i ¼ 1

f iðuÞwij ð13Þ

s:t:
Xm

j ¼ 1

wij ¼ 1 for i¼ 1, . . . ,m,

Xm

i ¼ 1

wij ¼ 1 for j¼ 1, . . . ,m,

Xm

i ¼ 1

wijf iðuÞZ
Xm

i ¼ 1

wijþ1f iðuÞ, j¼ 1, . . . ,m�1,

w2
ij�wij ¼ 0 for i,j¼ 1, . . . ,m,

vs
klZ ðxk�aklÞ

r , k¼ 1, . . . ,n, l¼ 1, . . . ,d, ð14Þ

vs
klZðakl�xlÞ

r , k¼ 1, . . . ,n, l¼ 1, . . . ,d, ð15Þ

ur
k ¼

Xd

l ¼ 1

vkl

 !s

, k¼ 1, . . . ,n,

Xm

j ¼ 1

w2
ijr1, i¼ 1, . . . ,n, ð16Þ
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Xm
j ¼ 1

v2
ijrM

2t
, i¼ 1, . . . ,n, ð17Þ

wijAR, 8 i,j¼ 1, . . . ,m,

vklAR, ukAR, k¼ 1, . . . ,n, l¼ 1, . . . ,d,

xAK:

We note in passing that constraints (16) and (17) are redun-
dant but it is convenient to add them to ensure the Archimedean
condition for the feasible region K of the above auxiliary problem.

We also observe that the above problem simplifies for those
cases where r is even. In these cases, we can replace the two sets
of constraints, namely (14) and (15) by the simplest constraint

vs
kl ¼ ðxk�aklÞ

r , 8 k,l:

This reformulation reduces by (n� d) the number of constraints
defining the feasible set. Moreover, these constraints do not
induce semidefinite constraints in the moment approach but
linear equations for substitution. Following the same scheme of
the proof in Theorem 4 we get the following result that shows the
equivalence between the above polynomial optimization formu-
lation and our location problem (13).

Theorem 13. Let x be a feasible solution of (LOCOMRF) then there

exists a solution ðx,u,v,wÞ for (13) such that their objective values are

equal. Conversely, if ðx,u,v,wÞ is a feasible solution for (13) then there

exists a solution (x) for (LOCOMRF) having the same objective value.

In particular rl ¼ rl. Moreover, if K�Rd satisfies Archimedean

property then K �Rdþm2þnðdþ1Þ also satisfies Archimedean property.

Now, we can prove a convergence result that allows us to solve,
up to any degree of accuracy, the above class of problems. Let y¼ ðyaÞ
be a real sequence indexed in the monomial basis ðxbugvdwzÞ of
R½x,u,v,w� (with a¼ ðb,g,d,zÞANd

�Nn
�Nnd

�Nm2

).
Let h0ðx,u,v,wÞ :¼ plðx,u,v,wÞ, and denote xj :¼ dðdeg gjÞ=2e and

nj :¼ dðdeg hjÞ=2e, where fg1, . . . ,g‘g, and fh1, . . . ,h3m�1þm2þnð2dþ3Þg

are, respectively, the polynomial constraints that define K and K\K in
(13). For rZr0 :¼ max maxk ¼ 1,...,‘xk,maxj ¼ 0,...,3 m�1þm2þnð2dþ3Þnj

� �
,

we introduce the hierarchy of semidefinite programs:

min
y

LyðplÞ

s:t: MrðyÞk0,

Mr�xk
ðgk,yÞk0, k¼ 1, . . . ,‘, ðQ rÞ

Mr�nj
ðhj,yÞk0, j¼ 1, . . . ,3 m�1þm2þnð2dþ3Þ,

LyðqlÞ ¼ 1,

with optimal value denoted minQ r .

Theorem 14. Let K �Rdþm2þnðdþ1Þ be the feasible domain of

Problem (13). Then, with the notation above:
(a)
 min Q rmrl as r-1.

(b)
 Let yr be an optimal solution of the SDP relaxation (Q r). If

rank Mrðy
rÞ ¼ rank Mr�r0

ðyrÞ ¼ t

then min Q r ¼ rl and one may extract t points ðxnðkÞ,un

ðkÞ,vnðkÞ,wnðkÞÞtk ¼ 1 �K, all global minimizers of Problem

(LOCOMRF).
Proof. The convergence of the semidefinite relaxation (Q r) follows
from a result by Jibetean and De Klerk [13, Theorem 9] that it is
applied here to the rational function in (13) and the closed semi-

algebraic set K. The second assertion on the rank condition, for
extracting optimal solutions, follows from applying [23, Theorem
5.7] to the SDP relaxation (Q r). &
Here, we also observe that one can exploit the block diagonal
structure of the problem since there is a sparsity pattern in the
variables of formulation (13). The reader may note that the only
monomials that appear in that formulation are of the form
xaub

i

Qm
j ¼ 1 v

gj

ij for all i¼1,y,m. Hence, a result similar to
Theorem 12 also holds for the hierarchy ðQrÞ of SDP applied to
the location problem. Nevertheless, although we have used it in
our computational test, we do not give specific details for the sake
of presentation and because of the similarity with Theorem 12.

We illustrate the above results with an instance of the well-
known Weber problem with ‘3-norm and for 20 random demand
points in R3.

Example 15. Let A¼ fð0:0758,0:0540,0:5308Þ, ð0:7792, 0:9340,
0:1299Þ, ð0:5688,0:4694,0:0119Þ, ð0:3371,0:1622,0:7943Þ, ð0:3112,
0:5285,0:1656Þ, ð0:6020,0:2630,0:6541Þ, ð0:6892,0:7482,0:4505Þ,
ð0:0838,0:2290,0:9133Þ, ð0:1524,0:8259,0:5383Þ, ð0:9961,0:0782,
0:4427Þ, ð0:1066,0:9619,0:0046Þ, ð0:7749,0:8173,0:8687Þ, ð0:0844,
0:3998, 0:2599Þ, ð0:8000,0:4314,0:9106Þ, ð0:1818,0:2638,0:1455Þ,
ð0:1361,0:8693,0:5797Þ, ð0:5499,0:1450,0:8530Þ, ð0:5499,0:1450,
0:8530Þ, ð0:4018,0:0760,0:2399Þ, ð0:1233,0:1839,0:2400Þg be a set
of random points in K :¼ ½0,1�3.

Then, we consider the problem

min
X
aAA

Jx�aJ3

s:t: xAK:

The exact optimal solution is given by x ¼ ð0:426397,0:438730,

0:455857Þ with optimal value f ¼ 8:729976. We get with our

approach for the first relaxation of the problem, using SDPT3 [16],

an optimal solution xn ¼ ð0:426397,0:438730,0:455857Þ, with opti-

mal value f n ¼ 8:729976. Thus, the relative error is E ¼ 9f n�f 9=f ¼

2:199595� 10�13.

For the same set of points, we consider a modification of the

above problem by adding an extra nonconvex constraint:

min
X
aAA

Jx�aJ3

s:t: x2
1�2x2

2�2x2
3Z0,

xAK:

The exact optimal solution of this problem is ~x ¼ ð0:562304,

0:266296,0:295262Þ with optimal value ~f ¼ 10:109333. The

reader may note that the original solution x is not feasible for

the new problem. Using our approach, again for the first relaxa-

tion order, we get xnn ¼ ð0:562304,0:266296,0:295262Þ with opti-

mal value f nn ¼ 10:109333. Hence, the relative error in this case is

~E ¼ 9f nn�~f 9=~f ¼ 5:801151� 10�9.

We show in Fig. 1 the feasible region of the later problem as

well as the demand points and the optimal solutions (the exact

and the ones obtained with our relaxed formulations) of the

problems. The demand points in A are represented by ‘n’, the

optimal solution, xn, of the SDP relaxation without the non-

convex constraint by ‘’’ and the optimal solution, xnn, of the

SDP relaxation with the non-convex constraint is depicted by ‘�’.

In the following, we recall the definition of some well-known
location problems that will be the basis of our computational
results. We observe that some of these problems admit different
reformulations. Nevertheless, our goal is to test the efficiency of
the general methodology when applied to some standard location
problems. Improved results, specifically devoted to convex
ordered median location problems under general ‘t norms are



Fig. 1. Feasible region, demand points and optimal solutions of Example 15.
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currently under research and will be the scope of a follow
up paper.

We consider five problems types, namely Weber, center,
k-centrum, range and trimmed-mean problems over a compact
semi-algebraic set K.

In the standard version of the Weber problem, we are given a
set of demand points fa1, . . . ,ang in Rd and a set of non-negative
weights o1, . . . ,on and one looks for a point xnAKDRd mini-
mizing the weighted Euclidean distance from the demand point.
In other words, the problem is: minxAK

Pn
i ¼ 1 oiJx�aiJt. This

problem has been largely studied in the literature of Location
Analysis and perhaps its most well-known algorithm, in the
unrestricted case, is the so-called Weiszfeld algorithm (see
[44]). Here, we observe that this problem corresponds to a very
particular choice of the elements in (LOCOMRF): l¼ ð1, . . . ,1Þ,
f iðuÞ ¼oiui.

The minimax (center) location problem looks for the location of
a server xAK that minimizes the maximum weighted distance to
a given set of demands points fa1, . . . ,ang in Rd. Formally, the
problem can be stated as: min

xAKDRd maxi ¼ 1,...,noiJx�aiJt, for
some weights o1, . . . ,onZ0.

Once more, this problem has been extensively analyzed in the
literature of Location Analysis and the most well-known algo-
rithms to solve its unrestricted version are those by Elzinga–
Hearn (only valid in R2 with Euclidean distance) and Dyer [9,8]
and Megiddo [26] which are polynomial in fixed dimension.
Again, we observe that this problem corresponds to a very
particular choice of the elements in (LOCOMRF): l¼ ð1,0, . . . ,0Þ,
f iðuÞ ¼oiui.

The k-centrum location problem consists of finding the point xn

that minimizes the sum of the k-largest distances with respect

to a given set of demands points fa1, . . . ,ang in Rd. Formally, the

problem can be stated as: minxAK
Pk

i ¼ 1 dðiÞðxÞ, where dðiÞðxÞ ¼

Jx�asðiÞJt for a permutation s such that dsð1ÞðxÞZ � � �ZdsðnÞðxÞ.

This problem has been considered in several papers and textbooks

(see [28,5]). Currently, there exist few approaches to solve even

the unrestricted version in the plane (i.e. d¼2) and with the

Euclidean norm (see [6,7,38]). The objective function of this

problem is described by a vector of l-parameters l¼ ð1, . . . ,1
zfflfflfflffl}|fflfflfflffl{k

,

0, . . . ,0Þ, f iðuÞ ¼ ui.
The next problem that we address in our computational

experiments is the range location problem. This problem consists
of minimizing the difference (range) between the maximum and
minimum distances with respect to a given set of demand points
fa1, . . . ,ang in Rd (see [6,7,28]). Formally, the problem can be
stated as: minxAK½maxi ¼ 1,...,nJx�aiJt�mini ¼ 1,...,nJx�aiJt�. This
problem corresponds to the following choice of the elements in
(LOCOMRF): l¼ ð1,0, . . . ,0,�1Þ, f iðuÞ ¼ ui.

Finally, the ðk1,k2Þ-trimmed-mean location problem looks for a
point xnAK that minimizes the sum of the central distances, once
we have excluded the k2 closest and the k1 furthest points.

Formally, the problem is: minxAK
Pn�k2

i ¼ k1þ1 dðiÞðxÞ, where dðiÞðxÞ ¼

Jx�asðiÞJt for a permutation s such that dsð1ÞðxÞZ � � �ZdsðnÞðxÞ.

This problem has been considered in several papers and textbooks
(see [28,5]). Currently, there exists two approaches to solve it in
the plane (i.e. d¼2) and with the Euclidean norm (see [6,7]). The
objective function of this problem, in terms of the elements

in (LOCOMRF), is described by a vector of l-parameters l¼

ð0, . . . ,0
zfflfflfflffl}|fflfflfflffl{k1

, 1, . . . ,1,0, . . . ,0
zfflfflfflffl}|fflfflfflffl{k2

Þ, f iðuÞ ¼ ui.
We note in passing that, according to our discussion in Remark

10, the trimmed-mean problem type also covers the so-called
Expropriation and Anti k-centrum problems [2,6] among others.

4.1. A finite convergence result for some location problems

In the following we will prove a specialized convergence result
for a family of location problems. For this reason, we will
introduce an alternative relaxation that is convenient for the
considered location problems. Following the formulation in (kC),
let us consider the following reformulation of the k-centrum
location problem:

R̂ :¼ min ktþ
Xn

i ¼ 1

ri

s:t: z2
i Z

Xd

j ¼ 1

ðxj�aijÞ
2, i¼ 1, . . . ,n,

tþriZzi, i¼ 1, . . . ,n,

ðkCPÞ

Xd

j ¼ 1

x2
j þz2

i þt2þr2
i rM, i¼ 1, . . . ,n, ð18Þ

t,ri,ziZ0, i¼ 1, . . . ,n,

xAKDRd:

For i¼1,y,n, let us denote by disi, the constraints z2
i �
Pd

j ¼ 1

ðxj�aijÞ
2
Z0, by hi, i¼1,y,n the compactness constraints (18), by

lini, i¼1,y,n the linear inequality constraints and by f ¼ ktþPn
i ¼ 1 ri the objective function, respectively, in Problem (kCP). In

addition, let xj :¼ dðdeg gjÞ=2e where fg1, . . . ,g‘g are the polyno-

mial constraints that define K in Problem (kCP). For rZr0 :¼

maxfmaxk ¼ 1,...,‘xk,1g, we introduce the following relaxation of

Problem (kCP):

Rr :¼min Lyðf Þ

s:t: MrðyÞk0, i¼ 1, . . . ,n,

Mr�xk
ðgkyÞk0, k¼ 1, . . . ,‘,

Mr�1ðdisiyÞk0, i¼ 1, . . . ,n,

Mr�1ðhiyÞk0, i¼ 1, . . . ,n,

ðRelaxkrÞ

LyðliniÞZ0, i¼ 1, . . . ,n,

LyðxjÞ ¼ xj, j¼ 1, . . . ,d,

LyðriÞ ¼ ri, i¼ 1, . . . ,n,

LyðziÞ ¼ zi, i¼ 1, . . . ,n,

LyðtÞ ¼ t: ð19Þ
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For i¼1,y,n, we define the matrices

Ci ¼

ffiffiffiffiffi
M
p
�x1 x2 � � � xd zi t ri

x2

ffiffiffiffiffi
M
p
þx1 . . . 0 0 0 0

^ ^ & ^ ^ ^ ^

xd 0 . . .
ffiffiffiffiffi
M
p
þx1 0 0 0

zi 0 � � � 0
ffiffiffiffiffi
M
p
þx1 0 0

t 0 � � � 0 0
ffiffiffiffiffi
M
p
þx1 0

ri 0 � � � 0 0 0
ffiffiffiffiffi
M
p
þx1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
and

Di ¼

zi�ðx1�ai1Þ x2�ai2 � � � xd�aid

x2�ai2 ziþðx1�ai1Þ 0

^ &

xd�aid 0 ziþðx1�ai1Þ

0BBBB@
1CCCCA:

Based on the above matrices, set LyðDiÞ :¼ ðLyðDiðk,lÞÞÞdk,l ¼ 1 and
LyðCiÞ :¼ ðLyðCiðk,lÞÞÞdþ3

k,l ¼ 1.

Theorem 16. Let yn and R2 be an optimal solution and the optimal

value of the first order feasible relaxation (r¼2) of the unrestricted

versions (K¼Rd) of Problem (Relaxk
r ) for Problem (kCP) reinforced

with the constraints LyðCiÞk0 and LyðDiÞk0, for all i¼1,y,n. Then,
R2 is the optimal value and xn :¼ ðLyn ðxiÞÞ

d
i ¼ 1 is an optimal solution of

the corresponding Problem (kCP).

Proof. First of all, since in the considered problem the lambda-
vector is non-increasing monotone the unrestricted version of
(kCP) is convex [12, Theorem 3.6]; and, by [28, Proposition 6.4]
the optimal solution of this problem is attained at some point in
Rd. Consider the relaxation (Relaxk

r ) where all the constraints in
the original problems are rewritten with moment variables.

Now, we note that all the constraints that were linear in the

original problem are SDP representable and their representation

in (Relaxk
r ) is exact. Next, we observe that the constraints

z2
i Zo2

i Jx�aiJ
2
2 ¼o2

i

Pd
j ¼ 1ðxj�aijÞ

2, i¼ 1, . . . ,n can be equivalently

written, by the Schur complement, as Dik0. Indeed, Dik0 if and

only if:

zi�ðx1�ai1Þ�
1

ziþðx1�ai1Þ
ðx2�ai2, . . . ,xd�aidÞ

1 0

&

0 1

0B@
1CA x2�ai2

^

xd�aid

0B@
1CAZ0

which can be rewritten as

zi�ðx1�ai1Þ�ðziþðx1�ai1ÞÞ
�1
Xd

j ¼ 2

ðxj�aijÞ
2
Z0:

This is clearly equivalent to the original constraint z2
i �
Pd

j ¼ 1

ðxj�aijÞ
2
Z0.

Analogously, the compactness constraints hi of Problem (kCP)

can be also written as Cik0. Reinforcing the relaxation with

LyðDiÞk0 makes redundant the localizing constraints MrðdiyÞk0

associated to the original constraints z2
i Zo2

i Jx�aiJ
2
2 since LyðDiÞ

k0 is an exact representation of that constraint. Analogously,

reinforcing with LyðCiÞk0 makes also redundant the localizing

constraint MrðhiyÞk0.

Then, we have that the reinforced version of (Relaxk
r ) is an exact

SDP representation of Problem (kCP). Then, Problem (Relaxk
r ) can

be solved to obtain the exact optimal objective value and an

optimal solution of the original problems. Moreover, if yn is an

optimal solution then xn ¼ ðLyn ðxjÞÞ
d
j ¼ 1, i.e. the values of the

moment variables that correspond to the original x-variables are

the optimal solutions of the original problem. &

First of all, we remark that the above result does not extend to
Problem (ðk1,k2ÞTr) since its formulation contains some restrictions
that cannot be exactly represented by SDP constraints. Nevertheless,
including the new constraints makes its representation tighter and
improves the convergence. Moreover, we would like to point out
that the above result is mainly of theoretical interest and shows that
the standard approach can recognize the SDP structure of some
problems after some reinforcement with valid SDP inequalities. We
also note that Theorem 16, although is stated for the unrestricted
versions of the problems, can be extended to the restricted version
provided that K is convex and SDP representable.
5. Computational experiments

A series of computational experiments have been performed in
order to evaluate the behavior of the proposed methodology.
Programs have been coded in MATLAB R2010b and executed in a
PC with an Intel Core i7 processor at 2x 2.93 GHz and 8 GB of
RAM. The semidefinite programs have been solved by calling
SDPT3 4.0[16]. All our codes are available upon request.

We run the algorithm for several well-known continuous
location problems: Weber, center, k-center, trimmed-mean and
range. For each of them, we obtain the CPU times for computing
solutions as well as the gap with respect to upper bounds
obtained with the battery of functions in optimset of MATLAB
or the implementation by [6,7], which only provide approxima-
tions on the exact solutions (optimality cannot be certified). The
reader may note that we solve relaxed problems that give lower
bounds. Therefore, the gap of our lower bounds is computed with
respect to upper bounds which implies that actually may be even
better than the one reported.

In order to compute the accuracy of an obtained solution, we
use the following measure for the error (see [43]):

Eobj ¼
9the optimal value of the SDP�fopt9

maxf1,foptg
, ð20Þ

where fopt is the approximated optimal value obtained with the
functions in optimset or the implementation by [6,7].

We have organized our computational experiments in five
different problems types that coincide with those described
previously in Section 4. Our test problems are generated to be
comparable with previous results of some algorithms in the plane
[6,7] but, in addition, we also consider problems in R3 and a
battery of non-convex constrained problems. Thus, we report on
randomly generated points on the unit square and in the unit
cube. Depending on the problem, we have been able to solve
different problem sizes. In all problems, we could solve instances
with at least 1000 points for planar and 3-dimensional problems
and with an average accuracy higher than 10�5. (We remark that
for instance we could solve instances with many more points for
Weber and center problems with high precisions.)

Our goal is to present the results organized per problem type,
framework space (R2 or R3) and norm (‘2 and ‘3). We report results
only on the first relaxation order since its accuracy is rather good.
Needless to say that raising the relaxation order one gains some extra
precision (as expected) at the price of higher CPU times. In spite of
that, the considered problems seem to be very well-approximated
even with the first relaxation (as shown by our results).

The results in our tables are the average of 10 runs for each
size and problem type. In all cases our tables are organized in the
same way. Rows give the results for the different number of
demand points considered in the problems. Column n stands for
the number of points considered in the problem. Next, we present
6 blocks of two columns each. These blocks correspond to the
different problem types, namely Weber, center, k-centrum
(k¼ d0:1ne and d0:5ne), range and trimmed-mean. Within each



Table 1

Computational results for different location problems in R2 with norm ‘2.

n Weber Center k-Centrum, k¼0.1n k-Centrum, k¼0.5n Range Trimmed-mean

‘2 ‘2 ‘2 ‘2 ‘2 ‘2

CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj

10 0.31 0.00000127 1.33 0.00000978 1.34 0.00001760 1.34 0.00000455 1.26 0.01184986 2.98 0.00018438

20 0.68 0.00000005 3.08 0.00001456 3.31 0.00000598 3.18 0.00000111 2.21 0.06784203 6.34 0.00018729

30 1.00 0.00000003 5.35 0.00046734 6.34 0.00000465 5.50 0.00000123 3.10 0.02626473 9.96 0.00013896

50 1.70 0.00000005 10.61 0.00001725 11.97 0.00000425 13.22 0.00000048 6.57 0.07291619 20.89 0.00015183

100 3.55 0.00000004 30.83 0.00000542 38.59 0.00000292 37.58 0.00000020 14.58 0.02572793 46.62 0.00015415

200 7.05 0.00000004 84.16 0.00001519 99.55 0.00000093 100.39 0.00000044 31.34 0.03714671 118.09 0.00014847

300 10.66 0.00000003 139.36 0.00000386 164.28 0.00000055 159.49 0.00000005 74.49 0.03314587 188.91 0.00014136

400 14.27 0.00000003 216.28 0.00000337 240.42 0.00000057 211.09 0.00000010 94.59 0.04756016 304.58 0.00014574

500 17.74 0.00000003 305.36 0.00000336 328.64 0.00000028 285.02 0.00000012 172.06 0.05599743 391.78 0.00014832

1000 39.82 0.00000002 736.25 0.00002836 753.93 0.00000010 666.20 0.00000003 323.17 0.03572262 903.89 0.00016247

Table 2

Computational results for different location problems in R2 with norm ‘3.

n Weber Center k-Centrum, k¼0.1n k-Centrum, k¼0.5n Range Trimmed-mean

‘3 ‘3 ‘3 ‘3 ‘3 ‘3

CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj

10 0.44 0.00000029 1.70 0.00000441 1.46 0.00000998 1.45 0.00000512 1.38 0.01019686 2.87 0.00026887

20 1.01 0.00000007 3.59 0.00001389 3.71 0.00001100 4.15 0.00000065 2.70 0.02628318 6.75 0.00017690

30 1.50 0.00000044 6.33 0.00001259 6.46 0.00000321 6.93 0.00000056 5.35 0.09088091 11.19 0.00019343

50 2.50 0.00000018 12.91 0.00000947 13.92 0.00000554 16.20 0.00000048 10.51 0.07220939 20.62 0.00021732

100 5.21 0.00000012 34.07 0.00000690 42.11 0.00000256 34.41 0.00000040 24.30 0.03754705 52.83 0.00017720

200 10.73 0.00000010 87.18 0.00000663 111.38 0.00000043 98.39 0.00000028 55.67 0.04069077 128.14 0.00018684

300 16.07 0.00000008 173.36 0.00001240 180.18 0.00000067 157.35 0.00000017 92.37 0.07366743 191.46 0.00016696

400 21.30 0.00000015 240.12 0.00001163 262.77 0.00000053 233.61 0.00000010 154.74 0.02080770 312.34 0.00020440

500 27.46 0.00000010 299.41 0.00000498 341.34 0.00000035 291.80 0.00000006 168.54 0.01652014 391.24 0.00019197

1000 58.32 0.00000008 864.93 0.00009096 811.07 0.00000014 729.30 0.00000003 982.29 0.03131304 1023.53 0.00017985

Table 3

Computational results for different location problems in R3 with norm ‘2.

n Weber Center k-Centrum, k¼0.1n k-Centrum, k¼0.5n Range Trimmed-mean

‘2 ‘2 ‘2 ‘2 ‘2 ‘2

CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj

10 0.51 0.00000005 2.42 0.00003587 2.52 0.00005446 2.56 0.00006255 1.48 0.04627554 5.26 0.00135759

20 0.88 0.00000004 6.19 0.00012431 6.20 0.00000923 5.99 0.00000072 3.37 0.04179864 11.50 0.01742414

30 1.36 0.00000003 10.21 0.00006793 11.53 0.00000569 10.26 0.00000249 5.70 0.05373857 18.89 0.00014033

50 2.19 0.00000002 21.13 0.00008918 21.87 0.00000362 20.34 0.00000071 10.66 0.04831570 39.05 0.00013365

100 4.79 0.00000005 48.51 0.00001014 60.90 0.00000221 52.52 0.00000011 25.01 0.07934761 98.52 0.00011729

200 9.69 0.00000004 154.65 0.00027283 165.58 0.00000201 137.63 0.00000017 61.03 0.06438157 268.73 0.00011069

300 14.66 0.00000003 314.56 0.00000531 275.11 0.00000082 225.88 0.00000018 97.15 0.08691918 471.14 0.00011019

400 20.38 0.00000003 409.41 0.00024259 388.04 0.00000058 344.88 0.00000014 149.10 0.07838252 682.42 0.00011466

500 25.32 0.00000005 566.29 0.00007134 551.81 0.00000171 452.85 0.00000004 217.73 0.05275364 954.48 0.00010885

1000 56.86 0.00000003 1494.76 0.00024533 1362.24 0.00000053 1149.90 0.00000003 629.69 0.07637927 3472.17 0.00011673
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block CPU time is the average running time needed to solve each
of the instances and Eobj gives the error measure (see (20)).

We report problems with up to 1000 demands points ran-
domly generated in the unit square and the unit cube. We move n
between 10 and 1000 and 10 instances were generated for each
value of n. The first relaxation of the problems was solved in all
cases. For the k-centrum problem type we considered two
different k values to test the difficulty of problems with respect
to that parameter, k¼ d0:1ne,d0:5ne.

Tables 1 and 2 (respectively 3 and 4) show the averages CPU
times and gaps obtained for problems on the plane (respectively in
the 3-dimensional space) with norms ‘2 and ‘3. From our tables we
conclude that Weber problem is the simplest one whereas the
trimmed-mean problem is the hardest one, as expected. We observe
that for small values of k, i.e. k¼ d0:1ne the k-centrum is slightly
harder than for values closer to n. The results for the range problem
are similar to those of the k-centrum problems both in CPU time and
accuracy. Finally, the trimmed-mean problems are the hardest
problems among the five considered problem types. We are able
to solve similar sizes with similar accuracies using the first order
relaxation. However, CPU times are significantly higher than for the
other problem types. These results show that this methodology can
be efficiently applied to solve medium sized location problems.
We remark that CPU times increase linearly with the number of



Table 4

Computational results for different location problems in R3 with norm ‘3.

n Weber Center k-Centrum, k¼0.1n k-Centrum, k¼0.5n Range Trimmed-mean

‘3 ‘3 ‘3 ‘3 ‘3 ‘3

CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj

10 0.69 0.00000010 2.66 0.00001359 2.71 0.00005560 2.87 0.00000449 2.22 0.10307486 5.71 0.00480821

20 1.35 0.00000011 6.65 0.00000975 6.86 0.00001997 6.69 0.00000579 4.14 0.08095350 12.28 0.00018630

30 2.02 0.00000012 10.53 0.00001685 11.57 0.00001989 11.51 0.00000032 6.52 0.01220608 19.59 0.00019285

50 3.57 0.00000013 21.95 0.00007675 21.92 0.00000427 22.07 0.00000048 11.68 0.01228767 38.27 0.00017595

100 7.32 0.00000012 57.85 0.00003824 64.18 0.00000212 53.87 0.00000131 28.79 0.08973747 92.26 0.00018263

200 14.64 0.00000011 139.71 0.00007898 173.98 0.00000099 136.63 0.00000022 63.18 0.06295116 244.31 0.00017962

300 22.45 0.00000008 250.37 0.00001856 290.92 0.00000063 245.90 0.00000007 114.54 0.08206731 423.24 0.00017924

400 29.75 0.00000009 409.45 0.00016182 446.72 0.00000028 368.77 0.00000011 233.32 0.03201793 621.35 0.00018478

500 37.22 0.00000010 600.27 0.00003066 578.19 0.00000042 449.46 0.00000014 253.54 0.08371244 848.15 0.00016222

1000 84.06 0.00000008 1606.89 0.00009110 1513.15 0.00000023 1280.10 0.00000007 985.88 0.07694671 3127.34 0.00016783

Table 5

Computational results for different location problems in R3 with norm ‘3 and the non-convex constraint of Example 15.

n Weber Center k-Centrum, k¼0.5n Range Trimmed-mean

‘3 ‘3 ‘3 ‘3 ‘3

CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj CPU time Eobj

10 1.36 0.09405959 2.60 0.02665885 3.71 0.06430646 3.33 0.01200950 6.77 0.01612428

20 2.62 0.02005929 6.81 0.02853398 9.64 0.06002251 5.88 0.01654221 19.51 0.06695578

30 4.43 0.01289829 12.04 0.02398289 14.94 0.04207472 9.27 0.01746477 33.10 0.05719759

50 7.02 0.04547366 23.43 0.04546409 30.81 0.03988616 16.83 0.01842803 70.97 0.02065027

100 16.93 0.00878935 63.92 0.03436590 69.45 0.03902827 38.43 0.01780251 175.74 0.02007698

200 41.74 0.02680226 159.26 0.04300610 167.13 0.03277066 130.96 0.01943710 521.29 0.01346846

300 97.21 0.00284410 284.28 0.02752200 250.99 0.03194087 149.15 0.04979041 961.07 0.01450505

400 116.66 0.00830339 379.43 0.03601218 362.18 0.02811320 222.61 0.03480614 1585.15 0.01388022

500 153.45 0.03299625 465.89 0.05757692 461.47 0.03286206 410.30 0.02320407 1945.49 0.01294002

1000 343.82 0.08902627 1721.78 0.05060629 1422.53 0.03233196 982.99 0.06977909 8383.62 0.01229571
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points in all problem types. A linear regression between these times
and the number of points gives a regression coefficient R-squared
(coefficient of determination of the regression) greater than 0.98 for
all the problems. Therefore, this shows a linear dependence, up to
the tested sizes, between problem sizes and CPU times for solving
the corresponding relaxations.

Special attention is required to explain the results for the range
problem instances. There the gaps are slightly larger than for the
rest of the problems, actually some of these gaps are negative. We
have tested, indeed, that this behavior is due to the fact that we got
solutions with better objective values than those obtained by
optimset which was considered our reference for comparison. This
observation proves the remarkable behavior of our approach.

Finally, in Table 5 we also report results on the same problem
types in the 3-dimensional space with norm ‘3 and the additional
non-convex constraint used in Example 15. As the reader can see,
our approach is able to solve similar problems sizes, with good
accuracy and CPU times. Once more, CPU times increase almost
linearly with size for all problem types using that relaxation
order. This shows that this method is also applicable to con-
strained (non-convex) problems with different norms and it is not
limited to planar or low dimensional framework spaces.
6. Conclusions

We develop a unified tool for minimizing ordered weighted
averaging of rational functions. This approach goes beyond a
trivial adaptation of the general theory of moments since ordered
weighted averages of rational functions are, in general, neither
rational functions nor the supremum of rational functions so that
current results cannot directly be applied to handle these pro-
blems. As an important application we cast a general class of
continuous location problems within the minimization of OWA
rational functions. We report computational results that show the
powerfulness of this methodology to solve medium size contin-
uous location problems.

This new approach solves a broad class of convex and non-
convex continuous location problems that, up to date, were only
partially solved in the specialized literature. We have tested this
methodology with some medium size standard ordered median
location problems in the plane and in the 3-dimensional space.
Our goal was not to compete with previous algorithms since most
of them are either designed for specific problems or only applic-
able for planar problems. However, in all cases we obtained
reasonable CPU times and accurate results even with low relaxa-
tion orders. Our good results heavily rely on the fact that we have
detected sparsity patterns in these problems reducing consider-
ably the sizes of the SDP objects to be considered.
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